Rigorous derivation of the Landau equation in the weak coupling limit

نویسنده

  • Kay Kirkpatrick
چکیده

We examine a family of microscopic models of plasmas, with a parameter α comparing the typical distance between collisions to the strength of the grazing collisions. These microscopic models converge in distribution, in the weak coupling limit, to a velocity diffusion described by the linear Landau equation (also known as the Fokker-Planck equation). The present work extends and unifies previous results that handled the extremes of the parameter α to the whole range (0, 1/2], by showing that clusters of overlapping obstacles are negligible in the limit. Additionally, we study the diffusion coefficient of the Landau equation and show it to be independent of the parameter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

رفتار سالیتونی در مدلهای ناپایدار باروکیلینیک

  Here we concern ouraelves with the derivation of a system of evolution equations for slowly varying amplitude of a baroclinic wave packet. The self-induced transparency, Sine-Gordon, and nonlinear Schrodinger equations, all of which possess soliton solutions, each arise for different inviscid limits. The presence of viscosity, however, alters the form of the evolution equations and changes th...

متن کامل

Coarsening by Ginzburg-Landau Dynamics

We study slowly moving solutions of the real Ginzburg-Landau equation on the line, by a method due to J. Carr and R.L. Pego. These are functions taking alternately positive or negative values on large intervals. A consequence of our approach is that we can propose a rigorous derivation of a stochastic model of coarsening by successive elimination of the smallest interval, which was described in...

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

/ 97 06 01 2 v 1 1 0 Ju n 19 97 Coarsening by Ginzburg - Landau Dynamics

We study slowly moving solutions of the real Ginzburg-Landau equation on the line, by a method due to J. Carr and R.L. Pego. These are functions taking alternately positive or negative values on large intervals. A consequence of our approach is that we can propose a rigorous derivation of a stochastic model of coarsening by successive elimination of the smallest interval, which was described in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009