Rigorous derivation of the Landau equation in the weak coupling limit
نویسنده
چکیده
We examine a family of microscopic models of plasmas, with a parameter α comparing the typical distance between collisions to the strength of the grazing collisions. These microscopic models converge in distribution, in the weak coupling limit, to a velocity diffusion described by the linear Landau equation (also known as the Fokker-Planck equation). The present work extends and unifies previous results that handled the extremes of the parameter α to the whole range (0, 1/2], by showing that clusters of overlapping obstacles are negligible in the limit. Additionally, we study the diffusion coefficient of the Landau equation and show it to be independent of the parameter.
منابع مشابه
Exact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملرفتار سالیتونی در مدلهای ناپایدار باروکیلینیک
Here we concern ouraelves with the derivation of a system of evolution equations for slowly varying amplitude of a baroclinic wave packet. The self-induced transparency, Sine-Gordon, and nonlinear Schrodinger equations, all of which possess soliton solutions, each arise for different inviscid limits. The presence of viscosity, however, alters the form of the evolution equations and changes th...
متن کاملCoarsening by Ginzburg-Landau Dynamics
We study slowly moving solutions of the real Ginzburg-Landau equation on the line, by a method due to J. Carr and R.L. Pego. These are functions taking alternately positive or negative values on large intervals. A consequence of our approach is that we can propose a rigorous derivation of a stochastic model of coarsening by successive elimination of the smallest interval, which was described in...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کامل/ 97 06 01 2 v 1 1 0 Ju n 19 97 Coarsening by Ginzburg - Landau Dynamics
We study slowly moving solutions of the real Ginzburg-Landau equation on the line, by a method due to J. Carr and R.L. Pego. These are functions taking alternately positive or negative values on large intervals. A consequence of our approach is that we can propose a rigorous derivation of a stochastic model of coarsening by successive elimination of the smallest interval, which was described in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009